Hydrogen production from methane using an RF plasma source in total nonambipolar flow
نویسندگان
چکیده
A radio-frequency (RF) helicon plasma reaction chamber (HPRC) is developed and used to decompose methane gas into high-purity hydrogen gas and solid carbon in the form of graphite. A single-turn (m = 0) helicon antenna, operated at 13.56 MHz, and a 100 G dipole magnetic field are used to excite a helicon mode in a nonthermal plasma, creating plasma densities exceeding 1013 cm−3 using 8–20 SCCM methane gas at up to 1300 W of RF power. The HPRC device takes advantage of a uniform large amplitude electron sheath across the exit aperture. At this aperture, all of the incident electron flux from the plasma is extracted and all ions are reflected back into the source. In this way, only neutrals and electrons are allowed out of the reaction chamber, enhancing the breakdown of methane into deposited carbon and hydrogen gas that escapes. A methane decomposition percentage of 99.99 ± 0.06% is demonstrated using 1300 W of RF power and a methane gas flow rate of 8 SCCM. A total nonambipolar flow of particles maximizes the recirculation of ions, and leads to the very high degree of molecular decomposition achieved in this proof-of-concept device. The HPRC in its present proof-of-concept form requires 37× more energy per kg of H2 produced, compared with steam-methane reformation, though this energy comparison does not include the energy required to sequester the emitted CO2 during the steam–methane reformation cycle. (Some figures may appear in colour only in the online journal)
منابع مشابه
Simulation and modeling of hydrogen production from glucose biomass model compound via hydro-thermal gasification
Glucose is a 6-carbon carbohydrate compound present in plants and the ingredient for hemicellulose which makes up 30% of plants’ total mass. The current study uses glucose as reactant and evaluates hydrogen generation at different temperatures and different amounts of input flow of glucose – water mixture. Hydrothermal gasification method is used for hydrogen generation in an open system with c...
متن کاملSimulation of Methane Partial Oxidation in Porous Media Reactor for Hydrogen Production
The enactment of strict laws on reducing pollution and controlling combustion has given rise to the necessity of considering a new approach to energy supply in the future. One such approach is the use of hydrogen as an alternative to fossil fuels. Hydrogen and synthesis gas are typically produced through the partial oxidation of methane in porous media. This process was theoretically simula...
متن کاملExperimental investigation of Methane Partial Oxidation in Porous Media for Hydrogen Production
One of the future technologies for energy supply in the electricity and automotive industries is the use of fuel cells. Hydrogen is the main source of fuel in fuel cells. Methane reforming through partial oxidation of methane is one of the methods of hydrogen production. In this paper, this process for the production of hydrogen gas, which is the energy source of these fuel cells, is examined n...
متن کاملOperating a radio-frequency plasma source on water vapor.
A magnetically enhanced radio-frequency (rf) plasma source operating on water vapor has an extensive list of potential applications. In this work, the use of a rf plasma source to dissociate water vapor for hydrogen production is investigated. This paper describes a rf plasma source operated on water vapor and characterizes its plasma properties using a Langmuir probe, a residual gas analyzer, ...
متن کاملAn Experimental Investigation on Simultaneous Effects of Oxygen Ratio and Flow-Rate in SOFCs Performance Fueled by a Mixture of Methane and Oxygen
Catalytic partial oxidation (CPOX) has recently received particular attention because it is one of the most attractive technologies for the production of syngas and hydrogen in small to medium scales. Current study subjected to partial oxidation reforming which have simultaneously studied the effect of the fuel composition and flow rates of methane-oxygen mixed gas on the SOFCs performances. In...
متن کامل